Note: All code beginning with the next lesson has been created and
compiled using Microsoft Visual Studio .NET Enterprise Architect, not
Visual Studio 6.0
Welcome to the seventh lesson in my OpenGL series! In this lesson we will learn about Projections and even put them to some simple use to see them in action. Some of you may have realized that we've used projection transformations in code before, and you're right, we have. The difference is now we will discuss how they work, and then demonstrate these concepts.
OpenGL consists of two general classes of projection transformations: orthographic (parallel) and perspective. So let's get into detail on both of these!
Welcome to the seventh lesson in my OpenGL series! In this lesson we will learn about Projections and even put them to some simple use to see them in action. Some of you may have realized that we've used projection transformations in code before, and you're right, we have. The difference is now we will discuss how they work, and then demonstrate these concepts.
OpenGL consists of two general classes of projection transformations: orthographic (parallel) and perspective. So let's get into detail on both of these!
Orthographic Projections
Orthographic, or parallel, projections consist of those that involve no
perspective correction. There is no adjustment for distance from the
camera made in these projections, meaning objects on the screen will
appear the same size no matter how close or far away they are.
Traditionally this type of projection was included in OpenGL for uses in CAD, or Computer Aided Design. Some uses of orthographic projections are making 2D games, or for creating isometric games. To setup this type of projection we use the OpenGL provided glOrtho() function.
Since orthographic projections are commonly used in 2D scenes the Utility Library provides an additional routine to set them up for scenes that won't be using the z-coordinate.
Traditionally this type of projection was included in OpenGL for uses in CAD, or Computer Aided Design. Some uses of orthographic projections are making 2D games, or for creating isometric games. To setup this type of projection we use the OpenGL provided glOrtho() function.
glOrtho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near, GLdouble far);left and right specify the x-coordinate clipping planes, bottom and top specify the y-coordinate clipping planes, and near and far specify the distance to the z-coordinate clipping planes. Together these coordinates provide a box shaped viewing volume.
Since orthographic projections are commonly used in 2D scenes the Utility Library provides an additional routine to set them up for scenes that won't be using the z-coordinate.
gluOrtho2D
(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top);
Perspective Projections
Although orthographic projections can be interesting, perspective
projections create more realistic looking scenes, so that's what you
will most likely be using most often. In perspective projections, as an
object gets farther from the viewer it will appear smaller on the
screen- an effect often referred to as foreshortening. The viewing
volume for a perspective projection is a frustum, which looks like a
pyramid with the top cut off, with the narrow end toward the user.
There is a few different ways you can setup the view frustum, and thus the perspective projection. The first we will look at is as follows:
Ok, so let's look at some code. This code is taken right from OpenGL Game Programming. Take the time to study and manipulate the code, then you will be ready for lesson 8!
There is a few different ways you can setup the view frustum, and thus the perspective projection. The first we will look at is as follows:
void glFrustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near, GLdouble far);Using glFrustum enables you to specify an asymmetrical frustum, which can be very useful in some instances, but isn't what you typically want to do. For a different solution we again turn to the Utility Library:
void gluPerspective(GLdouble fov, GLdouble aspect, GLdouble near, GLdouble far);fov specifies, in degrees, the angle in the y direction that is visible to the user; aspect is the aspect ratio of the scene, which is width divided by the height. This will determine the field of view in the x direction.
Ok, so let's look at some code. This code is taken right from OpenGL Game Programming. Take the time to study and manipulate the code, then you will be ready for lesson 8!
// OpenGLProjectionExample.cpp : Defines the entry point for the application. // #define WIN32_LEAN_AND_MEAN #pragma comment(lib, "opengl32.lib") #pragma comment(lib, "glu32.lib") #pragma comment(lib, "glaux.lib") #pragma comment(linker, "/subsystem:windows") #include "stdafx.h" #include <windows.h> // standard Windows app include #include <winuser.h> // Windows constants #include <gl/gl.h> // standard OpenGL include #include <gl/glu.h> // OpenGL utilties #include <glut.h> // OpenGL utilties #define WND_CLASS_NAME "OpenGL Window Class" /*************************** Constants and Macros ***************************/ const int SCREEN_WIDTH = 500; const int SCREEN_HEIGHT = 500; const int SCREEN_BPP = 32; const bool USE_FULLSCREEN = false; const char *APP_TITLE = "Projections"; /********************************* Globals **********************************/ HDC g_hdc; // global device context HGLRC g_hrc; // global rendering context BOOL g_isFullscreen = TRUE; // toggles fullscreen and windowed display BOOL g_isActive = TRUE; // false if window is minimized HWND g_hwnd = NULL; // handle of our window HINSTANCE g_hInstance; // application instance /******************************** Prototypes ********************************/ LRESULT CALLBACK WndProc(HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam); BOOL SetupWindow(const char *title, int width, int height, int bits, bool isFullscreen); BOOL KillWindow(); GLvoid ResizeScene(GLsizei width, GLsizei height); BOOL InitializeScene(); BOOL DisplayScene(); BOOL Cleanup(); void UpdateProjection(GLboolean toggle = GL_FALSE); /***************************************************************************** WinMain() Windows entry point *****************************************************************************/ int WINAPI WinMain(HINSTANCE g_hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nShowCmd) { MSG msg; // message BOOL isDone; // flag indicating when the app is done // if the window is set up correctly, we can proceed with the message loop if (SetupWindow(APP_TITLE, SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_BPP, USE_FULLSCREEN)) isDone = FALSE; // otherwise, we need to never enter the loop and proceed to exit else isDone = TRUE; // main message loop while (!isDone) { if(PeekMessage(&msg, NULL, NULL, NULL, PM_REMOVE)) { if (msg.message == WM_QUIT) // do we receive a WM_QUIT message? { isDone = TRUE; // if so, time to quit the application } else { TranslateMessage(&msg); // translate and dispatch to event queue DispatchMessage(&msg); } } // don't update the scene if the app is minimized if (g_isActive) { // update the scene every time through the loop DisplayScene(); // switch the front and back buffers to display the updated scene SwapBuffers(g_hdc); } } Cleanup(); KillWindow(); return msg.wParam; } // end WinMain() /***************************************************************************** WndProc() Windows message handler *****************************************************************************/ LRESULT CALLBACK WndProc(HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam) { switch(message) { case WM_ACTIVATE: // watch for the window being minimized and restored { if (!HIWORD(wParam)) { // program was restored or maximized g_isActive = TRUE; } else { // program was minimized g_isActive=FALSE; } return 0; } case WM_SYSCOMMAND: // look for screensavers and powersave mode { switch (wParam) { case SC_SCREENSAVE: // screensaver trying to start case SC_MONITORPOWER: // monitor going to powersave mode // returning 0 prevents either from happening return 0; default: break; } } break; case WM_CLOSE: // window is being closed { // send WM_QUIT to message queue PostQuitMessage(0); return 0; } case WM_SIZE: { // update perspective with new width and height ResizeScene(LOWORD(lParam), HIWORD(lParam)); return 0; } case WM_CHAR: { switch (toupper(wParam)) { case VK_SPACE: { UpdateProjection(GL_TRUE); return 0; } case VK_ESCAPE: { // send WM_QUIT to message queue PostQuitMessage(0); return 0; } default: break; }; } break; default: break; } return (DefWindowProc(hwnd, message, wParam, lParam)); } // end WndProc() /***************************************************************************** SetupWindow() Create the window and everything else we need, including the device and rendering context. If a fullscreen window has been requested but can't be created, the user will be prompted to attempt windowed mode. Finally, InitializeScene is called for application-specific setup. Returns TRUE if everything goes well, or FALSE if an unrecoverable error occurs. Note that if this is called twice within a program, KillWindow needs to be called before subsequent calls to SetupWindow. *****************************************************************************/ BOOL SetupWindow(const char *title, int width, int height, int bits, bool isFullscreen) { // set the global flag g_isFullscreen = isFullscreen; // get our instance handle g_hInstance = GetModuleHandle(NULL); WNDCLASSEX wc; // window class // fill out the window class structure wc.cbSize = sizeof(WNDCLASSEX); wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC; wc.lpfnWndProc = WndProc; wc.cbClsExtra = 0; wc.cbWndExtra = 0; wc.hInstance = g_hInstance; wc.hIcon = LoadIcon(NULL, IDI_APPLICATION); // default icon wc.hIconSm = LoadIcon(NULL, IDI_WINLOGO); // windows logo small icon wc.hCursor = LoadCursor(NULL, IDC_ARROW); // default arrow wc.hbrBackground = NULL; // no background needed wc.lpszMenuName = NULL; // no menu wc.lpszClassName = WND_CLASS_NAME; // register the windows class if (!RegisterClassEx(&wc)) { MessageBox(NULL,"Unable to register the window class", "Error", MB_OK | MB_ICONEXCLAMATION); // exit and return FALSE return FALSE; } // if we're in fullscreen mode, set the display up for it if (g_isFullscreen) { // set up the device mode structure DEVMODE screenSettings; memset(&screenSettings,0,sizeof(screenSettings)); screenSettings.dmSize = sizeof(screenSettings); screenSettings.dmPelsWidth = width; // screen width screenSettings.dmPelsHeight = height; // screen height screenSettings.dmBitsPerPel = bits; // bits per pixel screenSettings.dmFields = DM_BITSPERPEL | DM_PELSWIDTH | DM_PELSHEIGHT; // attempt to switch to the resolution and bit depth we've selected if (ChangeDisplaySettings(&screenSettings, CDS_FULLSCREEN) != DISP_CHANGE_SUCCESSFUL) { // if we can't get fullscreen, let them choose to quit or try windowed mode if (MessageBox(NULL, "Cannot run in the fullscreen mode at the selected resolution\n" "on your video card. Try windowed mode instead?", "OpenGL Game Programming", MB_YESNO | MB_ICONEXCLAMATION) == IDYES) { g_isFullscreen = FALSE; } else { return FALSE; } } } DWORD dwExStyle; DWORD dwStyle; // set the window style appropriately, depending on whether we're in fullscreen mode if (g_isFullscreen) { dwExStyle = WS_EX_APPWINDOW; dwStyle = WS_POPUP; // simple window with no borders or title bar ShowCursor(FALSE); // hide the cursor for now } else { dwExStyle = WS_EX_APPWINDOW | WS_EX_WINDOWEDGE; dwStyle = WS_OVERLAPPEDWINDOW; } // set up the window we're rendering to so that the top left corner is at (0,0) // and the bottom right corner is (height,width) RECT windowRect; windowRect.left = 0; windowRect.right = (LONG) width; windowRect.top = 0; windowRect.bottom = (LONG) height; // change the size of the rect to account for borders, etc. set by the style AdjustWindowRectEx(&windowRect, dwStyle, FALSE, dwExStyle); // class registered, so now create our window g_hwnd = CreateWindowEx(dwExStyle, // extended style WND_CLASS_NAME, // class name title, // app name dwStyle | // window style WS_CLIPCHILDREN | // required for WS_CLIPSIBLINGS, // using OpenGL 0, 0, // x,y coordinate windowRect.right - windowRect.left, // width windowRect.bottom - windowRect.top, // height NULL, // handle to parent NULL, // handle to menu g_hInstance, // application instance NULL); // no extra params // see if our window handle is valid if (!g_hwnd) { MessageBox(NULL, "Unable to create window", "Error", MB_OK | MB_ICONEXCLAMATION); return FALSE; } // get a device context if (!(g_hdc = GetDC(g_hwnd))) { MessageBox(NULL,"Unable to create device context", "Error", MB_OK | MB_ICONEXCLAMATION); return FALSE; } // set the pixel format we want PIXELFORMATDESCRIPTOR pfd = { sizeof(PIXELFORMATDESCRIPTOR), // size of structure 1, // default version PFD_DRAW_TO_WINDOW | // window drawing support PFD_SUPPORT_OPENGL | // OpenGL support PFD_DOUBLEBUFFER, // double buffering support PFD_TYPE_RGBA, // RGBA color mode bits, // 32 bit color mode 0, 0, 0, 0, 0, 0, // ignore color bits, non-palettized mode 0, // no alpha buffer 0, // ignore shift bit 0, // no accumulation buffer 0, 0, 0, 0, // ignore accumulation bits 16, // 16 bit z-buffer size 8, // no stencil buffer 0, // no auxiliary buffer PFD_MAIN_PLANE, // main drawing plane 0, // reserved 0, 0, 0 }; // layer masks ignored GLuint pixelFormat; // choose best matching pixel format if (!(pixelFormat = ChoosePixelFormat(g_hdc, &pfd))) { MessageBox(NULL, "Can't find an appropriate pixel format", "Error", MB_OK | MB_ICONEXCLAMATION); return FALSE; } // set pixel format to device context if(!SetPixelFormat(g_hdc, pixelFormat,&pfd)) { MessageBox(NULL, "Unable to set pixel format", "Error", MB_OK | MB_ICONEXCLAMATION); return FALSE; } // create the OpenGL rendering context if (!(g_hrc = wglCreateContext(g_hdc))) { MessageBox(NULL, "Unable to create OpenGL rendering context", "Error",MB_OK | MB_ICONEXCLAMATION); return FALSE; } // now make the rendering context the active one if(!wglMakeCurrent(g_hdc, g_hrc)) { MessageBox(NULL,"Unable to activate OpenGL rendering context", "ERROR", MB_OK | MB_ICONEXCLAMATION); return FALSE; } // show the window in the forground, and set the keyboard focus to it ShowWindow(g_hwnd, SW_SHOW); SetForegroundWindow(g_hwnd); SetFocus(g_hwnd); // set up the perspective for the current screen size ResizeScene(width, height); // do one-time initialization if (!InitializeScene()) { MessageBox(NULL, "Initialization failed", "Error", MB_OK | MB_ICONEXCLAMATION); return FALSE; } return TRUE; } // end SetupWindow() /***************************************************************************** KillWindow() Deletes the DC, RC, and Window, and restores the original display. *****************************************************************************/ BOOL KillWindow() { // restore the original display if we're in fullscreen mode if (g_isFullscreen) { ChangeDisplaySettings(NULL, 0); ShowCursor(TRUE); } // if we have an RC, release it if (g_hrc) { // release the RC if (!wglMakeCurrent(NULL,NULL)) { MessageBox(NULL, "Unable to release rendering context", "Error", MB_OK | MB_ICONINFORMATION); } // delete the RC if (!wglDeleteContext(g_hrc)) {
MessageBox(NULL, "Unable to delete rendering context", "Error", MB_OK | MB_ICONINFORMATION); } g_hrc = NULL; } // release the DC if we have one if (g_hdc && !ReleaseDC(g_hwnd, g_hdc)) { MessageBox(NULL, "Unable to release device context", "Error", MB_OK | MB_ICONINFORMATION); g_hdc = NULL; } // destroy the window if we have a valid handle if (g_hwnd && !DestroyWindow(g_hwnd)) { MessageBox(NULL, "Unable to destroy window", "Error", MB_OK | MB_ICONINFORMATION); g_hwnd = NULL; } // unregister our class so we can create a new one if we need to if (!UnregisterClass(WND_CLASS_NAME, g_hInstance)) { MessageBox(NULL,
"Unable to unregister window class", "Error", MB_OK | MB_ICONINFORMATION); g_hInstance = NULL; } return TRUE; } // end KillWindow() /***************************************************************************** ResizeScene() Called once when the application starts and again every time the window is resized by the user. *****************************************************************************/ GLvoid ResizeScene(GLsizei width, GLsizei height) { // avoid divide by zero if (height==0) { height=1; } // reset the viewport to the new dimensions glViewport(0, 0, width, height); // set up the projection, without toggling the projection mode UpdateProjection(); } // end ResizeScene() /***************************************************************************** InitializeScene() Performs one-time application-specific setup. Returns FALSE on any failure. *****************************************************************************/ BOOL InitializeScene() { glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glShadeModel(GL_SMOOTH); glEnable(GL_DEPTH_TEST); return TRUE; } // end InitializeScene() /***************************************************************************** DisplayScene() The work of the application is done here. This is called every frame, and handles the actual rendering of the scene. *****************************************************************************/ BOOL DisplayScene() { GLfloat yellow[4] = { 1.0f, 1.0f, 0.2f, 1.0f }; GLfloat blue[4] = { 0.2f, 0.2f, 1.0f, 1.0f }; GLfloat green[4] = { 0.2f, 1.0f, 0.2f, 1.0f }; glLoadIdentity(); gluLookAt(-0.5, 1.0, 7.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, yellow); glPushMatrix(); glTranslatef(0.3, 0.0, 1.0); glutSolidCube(0.5); glPopMatrix(); glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, blue); glPushMatrix(); glutSolidCube(0.5); glPopMatrix(); glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, green); glPushMatrix(); glTranslatef(-0.3, 0.0, -1.0); glutSolidCube(0.5); glPopMatrix(); return TRUE; } // end DisplayScene() /***************************************************************************** Cleanup() Called at the end of successful program execution. *****************************************************************************/ BOOL Cleanup() { return TRUE; } // end Cleanup() /**************************************************************************** UpdateProjection() Sets the current projection mode. If toggle is set to GL_TRUE, then the projection will be toggled between perspective and orthograpic. Otherwise, the previous selection will be used again. *****************************************************************************/ void UpdateProjection(GLboolean toggle) { static GLboolean s_usePerspective = GL_TRUE; // toggle the control variable if appropriate if (toggle) s_usePerspective = !s_usePerspective; // select the projection matrix and clear it out glMatrixMode(GL_PROJECTION); glLoadIdentity(); // choose the appropriate projection based on the currently toggled mode if (s_usePerspective) { // set the perspective with the appropriate aspect ratio glFrustum(-1.0, 1.0, -1.0, 1.0, 5, 100); } else { // set up an orthographic projection with the same near clip plane glOrtho(-1.0, 1.0, -1.0, 1.0, 5, 100); } // select modelview matrix and clear it out glMatrixMode(GL_MODELVIEW); } // end UpdateProjectionSo now you have learned about Projections, and use them in code. In lesson 9 we will move on to Matrices.
No comments:
Post a Comment
if You Need Any Help Then Write Us:We Come Back With Solution